Solve for p, q
p=-6
q=-5
Share
Copied to clipboard
44p+10q=-314,-4p-7q=59
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
44p+10q=-314
Choose one of the equations and solve it for p by isolating p on the left hand side of the equal sign.
44p=-10q-314
Subtract 10q from both sides of the equation.
p=\frac{1}{44}\left(-10q-314\right)
Divide both sides by 44.
p=-\frac{5}{22}q-\frac{157}{22}
Multiply \frac{1}{44} times -10q-314.
-4\left(-\frac{5}{22}q-\frac{157}{22}\right)-7q=59
Substitute \frac{-5q-157}{22} for p in the other equation, -4p-7q=59.
\frac{10}{11}q+\frac{314}{11}-7q=59
Multiply -4 times \frac{-5q-157}{22}.
-\frac{67}{11}q+\frac{314}{11}=59
Add \frac{10q}{11} to -7q.
-\frac{67}{11}q=\frac{335}{11}
Subtract \frac{314}{11} from both sides of the equation.
q=-5
Divide both sides of the equation by -\frac{67}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=-\frac{5}{22}\left(-5\right)-\frac{157}{22}
Substitute -5 for q in p=-\frac{5}{22}q-\frac{157}{22}. Because the resulting equation contains only one variable, you can solve for p directly.
p=\frac{25-157}{22}
Multiply -\frac{5}{22} times -5.
p=-6
Add -\frac{157}{22} to \frac{25}{22} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
p=-6,q=-5
The system is now solved.
44p+10q=-314,-4p-7q=59
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-314\\59\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right))\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right))\left(\begin{matrix}-314\\59\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}44&10\\-4&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right))\left(\begin{matrix}-314\\59\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}44&10\\-4&-7\end{matrix}\right))\left(\begin{matrix}-314\\59\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{44\left(-7\right)-10\left(-4\right)}&-\frac{10}{44\left(-7\right)-10\left(-4\right)}\\-\frac{-4}{44\left(-7\right)-10\left(-4\right)}&\frac{44}{44\left(-7\right)-10\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-314\\59\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{7}{268}&\frac{5}{134}\\-\frac{1}{67}&-\frac{11}{67}\end{matrix}\right)\left(\begin{matrix}-314\\59\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{7}{268}\left(-314\right)+\frac{5}{134}\times 59\\-\frac{1}{67}\left(-314\right)-\frac{11}{67}\times 59\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-6\\-5\end{matrix}\right)
Do the arithmetic.
p=-6,q=-5
Extract the matrix elements p and q.
44p+10q=-314,-4p-7q=59
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-4\times 44p-4\times 10q=-4\left(-314\right),44\left(-4\right)p+44\left(-7\right)q=44\times 59
To make 44p and -4p equal, multiply all terms on each side of the first equation by -4 and all terms on each side of the second by 44.
-176p-40q=1256,-176p-308q=2596
Simplify.
-176p+176p-40q+308q=1256-2596
Subtract -176p-308q=2596 from -176p-40q=1256 by subtracting like terms on each side of the equal sign.
-40q+308q=1256-2596
Add -176p to 176p. Terms -176p and 176p cancel out, leaving an equation with only one variable that can be solved.
268q=1256-2596
Add -40q to 308q.
268q=-1340
Add 1256 to -2596.
q=-5
Divide both sides by 268.
-4p-7\left(-5\right)=59
Substitute -5 for q in -4p-7q=59. Because the resulting equation contains only one variable, you can solve for p directly.
-4p+35=59
Multiply -7 times -5.
-4p=24
Subtract 35 from both sides of the equation.
p=-6
Divide both sides by -4.
p=-6,q=-5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}