Solve for x, y, z, w
x = -\frac{39}{2} = -19\frac{1}{2} = -19.5
y=8
z=-1
w=3
Share
Copied to clipboard
w=\frac{-9}{-3}
Consider the fourth equation. Divide both sides by -3.
w=3
Divide -9 by -3 to get 3.
-2z-2\times 3=-4
Consider the third equation. Insert the known values of variables into the equation.
-2z-6=-4
Multiply -2 and 3 to get -6.
-2z=-4+6
Add 6 to both sides.
-2z=2
Add -4 and 6 to get 2.
z=\frac{2}{-2}
Divide both sides by -2.
z=-1
Divide 2 by -2 to get -1.
-y-6\left(-1\right)-2\times 3=-8
Consider the second equation. Insert the known values of variables into the equation.
-y+6-6=-8
Do the multiplications.
-y=-8
Subtract 6 from 6 to get 0.
y=\frac{-8}{-1}
Divide both sides by -1.
y=8
Fraction \frac{-8}{-1} can be simplified to 8 by removing the negative sign from both the numerator and the denominator.
4x+8\times 8+2\left(-1\right)+6\times 3=2
Consider the first equation. Insert the known values of variables into the equation.
4x+64-2+18=2
Do the multiplications.
4x+62+18=2
Subtract 2 from 64 to get 62.
4x+80=2
Add 62 and 18 to get 80.
4x=2-80
Subtract 80 from both sides.
4x=-78
Subtract 80 from 2 to get -78.
x=\frac{-78}{4}
Divide both sides by 4.
x=-\frac{39}{2}
Reduce the fraction \frac{-78}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{39}{2} y=8 z=-1 w=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}