Solve for x_1, x_2
x_{1}=3-x_{3}
x_{2}=x_{3}-1
Share
Copied to clipboard
2x_{1}+2x_{3}=6,3x_{1}+x_{2}+2x_{3}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x_{1}+2x_{3}=6
Pick one of the two equations which is more simple to solve for x_{1} by isolating x_{1} on the left hand side of the equal sign.
2x_{1}=6-2x_{3}
Subtract 2x_{3} from both sides of the equation.
x_{1}=3-x_{3}
Divide both sides by 2.
3\left(3-x_{3}\right)+x_{2}+2x_{3}=8
Substitute 3-x_{3} for x_{1} in the other equation, 3x_{1}+x_{2}+2x_{3}=8.
9-3x_{3}+x_{2}+2x_{3}=8
Multiply 3 times 3-x_{3}.
x_{2}+9-x_{3}=8
Add 9-3x_{3} to 2x_{3}.
x_{2}=x_{3}-1
Subtract 9-x_{3} from both sides of the equation.
x_{1}=3-x_{3},x_{2}=x_{3}-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}