Skip to main content
Solve for w, u
Tick mark Image

Similar Problems from Web Search

Share

w-u=60
Consider the second equation. Subtract u from both sides.
3w-2u=12,w-u=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3w-2u=12
Choose one of the equations and solve it for w by isolating w on the left hand side of the equal sign.
3w=2u+12
Add 2u to both sides of the equation.
w=\frac{1}{3}\left(2u+12\right)
Divide both sides by 3.
w=\frac{2}{3}u+4
Multiply \frac{1}{3} times 12+2u.
\frac{2}{3}u+4-u=60
Substitute \frac{2u}{3}+4 for w in the other equation, w-u=60.
-\frac{1}{3}u+4=60
Add \frac{2u}{3} to -u.
-\frac{1}{3}u=56
Subtract 4 from both sides of the equation.
u=-168
Multiply both sides by -3.
w=\frac{2}{3}\left(-168\right)+4
Substitute -168 for u in w=\frac{2}{3}u+4. Because the resulting equation contains only one variable, you can solve for w directly.
w=-112+4
Multiply \frac{2}{3} times -168.
w=-108
Add 4 to -112.
w=-108,u=-168
The system is now solved.
w-u=60
Consider the second equation. Subtract u from both sides.
3w-2u=12,w-u=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}w\\u\end{matrix}\right)=\left(\begin{matrix}12\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}w\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}w\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}w\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}w\\u\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\right)}\\-\frac{1}{3\left(-1\right)-\left(-2\right)}&\frac{3}{3\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}12\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}w\\u\end{matrix}\right)=\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right)\left(\begin{matrix}12\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}w\\u\end{matrix}\right)=\left(\begin{matrix}12-2\times 60\\12-3\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}w\\u\end{matrix}\right)=\left(\begin{matrix}-108\\-168\end{matrix}\right)
Do the arithmetic.
w=-108,u=-168
Extract the matrix elements w and u.
w-u=60
Consider the second equation. Subtract u from both sides.
3w-2u=12,w-u=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3w-2u=12,3w+3\left(-1\right)u=3\times 60
To make 3w and w equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3w-2u=12,3w-3u=180
Simplify.
3w-3w-2u+3u=12-180
Subtract 3w-3u=180 from 3w-2u=12 by subtracting like terms on each side of the equal sign.
-2u+3u=12-180
Add 3w to -3w. Terms 3w and -3w cancel out, leaving an equation with only one variable that can be solved.
u=12-180
Add -2u to 3u.
u=-168
Add 12 to -180.
w-\left(-168\right)=60
Substitute -168 for u in w-u=60. Because the resulting equation contains only one variable, you can solve for w directly.
w=-108
Subtract 168 from both sides of the equation.
w=-108,u=-168
The system is now solved.