Skip to main content
Solve for I_1, I_2, I_3
Tick mark Image

Similar Problems from Web Search

Share

I_{1}=I_{2}-I_{3} 14=10I_{3}+6I_{2} 21=5I_{1}+6I_{2}
Reorder the equations.
21=5\left(I_{2}-I_{3}\right)+6I_{2}
Substitute I_{2}-I_{3} for I_{1} in the equation 21=5I_{1}+6I_{2}.
I_{2}=\frac{7}{3}-\frac{5}{3}I_{3} I_{3}=\frac{11}{5}I_{2}-\frac{21}{5}
Solve the second equation for I_{2} and the third equation for I_{3}.
I_{3}=\frac{11}{5}\left(\frac{7}{3}-\frac{5}{3}I_{3}\right)-\frac{21}{5}
Substitute \frac{7}{3}-\frac{5}{3}I_{3} for I_{2} in the equation I_{3}=\frac{11}{5}I_{2}-\frac{21}{5}.
I_{3}=\frac{1}{5}
Solve I_{3}=\frac{11}{5}\left(\frac{7}{3}-\frac{5}{3}I_{3}\right)-\frac{21}{5} for I_{3}.
I_{2}=\frac{7}{3}-\frac{5}{3}\times \frac{1}{5}
Substitute \frac{1}{5} for I_{3} in the equation I_{2}=\frac{7}{3}-\frac{5}{3}I_{3}.
I_{2}=2
Calculate I_{2} from I_{2}=\frac{7}{3}-\frac{5}{3}\times \frac{1}{5}.
I_{1}=2-\frac{1}{5}
Substitute 2 for I_{2} and \frac{1}{5} for I_{3} in the equation I_{1}=I_{2}-I_{3}.
I_{1}=\frac{9}{5}
Calculate I_{1} from I_{1}=2-\frac{1}{5}.
I_{1}=\frac{9}{5} I_{2}=2 I_{3}=\frac{1}{5}
The system is now solved.