Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}+x_{2}=-3 4x_{2}-x_{3}=-1 2x_{1}+x_{4}=1
Reorder the equations.
x_{1}=-x_{2}-3
Solve x_{1}+x_{2}=-3 for x_{1}.
2\left(-x_{2}-3\right)+x_{4}=1
Substitute -x_{2}-3 for x_{1} in the equation 2x_{1}+x_{4}=1.
x_{3}=4x_{2}+1 x_{2}=-\frac{7}{2}+\frac{1}{2}x_{4}
Solve the second equation for x_{3} and the third equation for x_{2}.
x_{3}=4\left(-\frac{7}{2}+\frac{1}{2}x_{4}\right)+1
Substitute -\frac{7}{2}+\frac{1}{2}x_{4} for x_{2} in the equation x_{3}=4x_{2}+1.
x_{3}=-13+2x_{4}
Calculate x_{3} from x_{3}=4\left(-\frac{7}{2}+\frac{1}{2}x_{4}\right)+1.
x_{1}=-\left(-\frac{7}{2}+\frac{1}{2}x_{4}\right)-3
Substitute -\frac{7}{2}+\frac{1}{2}x_{4} for x_{2} in the equation x_{1}=-x_{2}-3.
x_{1}=\frac{1}{2}-\frac{1}{2}x_{4}
Calculate x_{1} from x_{1}=-\left(-\frac{7}{2}+\frac{1}{2}x_{4}\right)-3.
x_{1}=\frac{1}{2}-\frac{1}{2}x_{4} x_{2}=-\frac{7}{2}+\frac{1}{2}x_{4} x_{3}=-13+2x_{4}
The system is now solved.