Solve for x, y
x=3\text{, }y=-1
x=-\frac{23}{7}\approx -3.285714286\text{, }y=\frac{15}{7}\approx 2.142857143
Graph
Share
Copied to clipboard
x+2y=1,-y^{2}+2x^{2}=17
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=1
Solve x+2y=1 for x by isolating x on the left hand side of the equal sign.
x=-2y+1
Subtract 2y from both sides of the equation.
-y^{2}+2\left(-2y+1\right)^{2}=17
Substitute -2y+1 for x in the other equation, -y^{2}+2x^{2}=17.
-y^{2}+2\left(4y^{2}-4y+1\right)=17
Square -2y+1.
-y^{2}+8y^{2}-8y+2=17
Multiply 2 times 4y^{2}-4y+1.
7y^{2}-8y+2=17
Add -y^{2} to 8y^{2}.
7y^{2}-8y-15=0
Subtract 17 from both sides of the equation.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7\left(-15\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+2\left(-2\right)^{2} for a, 2\times 1\left(-2\right)\times 2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 7\left(-15\right)}}{2\times 7}
Square 2\times 1\left(-2\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-28\left(-15\right)}}{2\times 7}
Multiply -4 times -1+2\left(-2\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64+420}}{2\times 7}
Multiply -28 times -15.
y=\frac{-\left(-8\right)±\sqrt{484}}{2\times 7}
Add 64 to 420.
y=\frac{-\left(-8\right)±22}{2\times 7}
Take the square root of 484.
y=\frac{8±22}{2\times 7}
The opposite of 2\times 1\left(-2\right)\times 2 is 8.
y=\frac{8±22}{14}
Multiply 2 times -1+2\left(-2\right)^{2}.
y=\frac{30}{14}
Now solve the equation y=\frac{8±22}{14} when ± is plus. Add 8 to 22.
y=\frac{15}{7}
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
y=-\frac{14}{14}
Now solve the equation y=\frac{8±22}{14} when ± is minus. Subtract 22 from 8.
y=-1
Divide -14 by 14.
x=-2\times \frac{15}{7}+1
There are two solutions for y: \frac{15}{7} and -1. Substitute \frac{15}{7} for y in the equation x=-2y+1 to find the corresponding solution for x that satisfies both equations.
x=-\frac{30}{7}+1
Multiply -2 times \frac{15}{7}.
x=-\frac{23}{7}
Add -2\times \frac{15}{7} to 1.
x=-2\left(-1\right)+1
Now substitute -1 for y in the equation x=-2y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=2+1
Multiply -2 times -1.
x=3
Add -2\left(-1\right) to 1.
x=-\frac{23}{7},y=\frac{15}{7}\text{ or }x=3,y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}