Solve for x, y, z
x=1
y=\frac{4}{5}=0.8
z=\frac{1}{2}=0.5
Share
Copied to clipboard
x=-2y-3z+\frac{41}{10}
Solve 10x+20y+30z=41 for x.
12\left(-2y-3z+\frac{41}{10}\right)+20y+28z=42 14\left(-2y-3z+\frac{41}{10}\right)+25y+40z=54
Substitute -2y-3z+\frac{41}{10} for x in the second and third equation.
y=\frac{9}{5}-2z z=\frac{17}{10}-\frac{3}{2}y
Solve these equations for y and z respectively.
z=\frac{17}{10}-\frac{3}{2}\left(\frac{9}{5}-2z\right)
Substitute \frac{9}{5}-2z for y in the equation z=\frac{17}{10}-\frac{3}{2}y.
z=\frac{1}{2}
Solve z=\frac{17}{10}-\frac{3}{2}\left(\frac{9}{5}-2z\right) for z.
y=\frac{9}{5}-2\times \frac{1}{2}
Substitute \frac{1}{2} for z in the equation y=\frac{9}{5}-2z.
y=\frac{4}{5}
Calculate y from y=\frac{9}{5}-2\times \frac{1}{2}.
x=-2\times \frac{4}{5}-3\times \frac{1}{2}+\frac{41}{10}
Substitute \frac{4}{5} for y and \frac{1}{2} for z in the equation x=-2y-3z+\frac{41}{10}.
x=1
Calculate x from x=-2\times \frac{4}{5}-3\times \frac{1}{2}+\frac{41}{10}.
x=1 y=\frac{4}{5} z=\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}