Solve for x, y
x = \frac{567}{4} = 141\frac{3}{4} = 141.75
y = \frac{13}{4} = 3\frac{1}{4} = 3.25
Graph
Share
Copied to clipboard
10x+190y=2035,x+y=145
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+190y=2035
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-190y+2035
Subtract 190y from both sides of the equation.
x=\frac{1}{10}\left(-190y+2035\right)
Divide both sides by 10.
x=-19y+\frac{407}{2}
Multiply \frac{1}{10} times -190y+2035.
-19y+\frac{407}{2}+y=145
Substitute -19y+\frac{407}{2} for x in the other equation, x+y=145.
-18y+\frac{407}{2}=145
Add -19y to y.
-18y=-\frac{117}{2}
Subtract \frac{407}{2} from both sides of the equation.
y=\frac{13}{4}
Divide both sides by -18.
x=-19\times \frac{13}{4}+\frac{407}{2}
Substitute \frac{13}{4} for y in x=-19y+\frac{407}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{247}{4}+\frac{407}{2}
Multiply -19 times \frac{13}{4}.
x=\frac{567}{4}
Add \frac{407}{2} to -\frac{247}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{567}{4},y=\frac{13}{4}
The system is now solved.
10x+190y=2035,x+y=145
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&190\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2035\\145\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&190\\1&1\end{matrix}\right))\left(\begin{matrix}10&190\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\145\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&190\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\145\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&190\\1&1\end{matrix}\right))\left(\begin{matrix}2035\\145\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-190}&-\frac{190}{10-190}\\-\frac{1}{10-190}&\frac{10}{10-190}\end{matrix}\right)\left(\begin{matrix}2035\\145\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{180}&\frac{19}{18}\\\frac{1}{180}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}2035\\145\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{180}\times 2035+\frac{19}{18}\times 145\\\frac{1}{180}\times 2035-\frac{1}{18}\times 145\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{567}{4}\\\frac{13}{4}\end{matrix}\right)
Do the arithmetic.
x=\frac{567}{4},y=\frac{13}{4}
Extract the matrix elements x and y.
10x+190y=2035,x+y=145
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+190y=2035,10x+10y=10\times 145
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+190y=2035,10x+10y=1450
Simplify.
10x-10x+190y-10y=2035-1450
Subtract 10x+10y=1450 from 10x+190y=2035 by subtracting like terms on each side of the equal sign.
190y-10y=2035-1450
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
180y=2035-1450
Add 190y to -10y.
180y=585
Add 2035 to -1450.
y=\frac{13}{4}
Divide both sides by 180.
x+\frac{13}{4}=145
Substitute \frac{13}{4} for y in x+y=145. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{567}{4}
Subtract \frac{13}{4} from both sides of the equation.
x=\frac{567}{4},y=\frac{13}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}