Skip to main content
Solve for s_2
Tick mark Image

Share

-9.8+s_{2}^{2}=\frac{1}{6}
Multiply -4.9 and 2 to get -9.8.
s_{2}^{2}=\frac{1}{6}+9.8
Add 9.8 to both sides.
s_{2}^{2}=\frac{299}{30}
Add \frac{1}{6} and 9.8 to get \frac{299}{30}.
s_{2}=\frac{\sqrt{8970}}{30} s_{2}=-\frac{\sqrt{8970}}{30}
Take the square root of both sides of the equation.
-9.8+s_{2}^{2}=\frac{1}{6}
Multiply -4.9 and 2 to get -9.8.
-9.8+s_{2}^{2}-\frac{1}{6}=0
Subtract \frac{1}{6} from both sides.
-\frac{299}{30}+s_{2}^{2}=0
Subtract \frac{1}{6} from -9.8 to get -\frac{299}{30}.
s_{2}^{2}-\frac{299}{30}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
s_{2}=\frac{0±\sqrt{0^{2}-4\left(-\frac{299}{30}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{299}{30} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s_{2}=\frac{0±\sqrt{-4\left(-\frac{299}{30}\right)}}{2}
Square 0.
s_{2}=\frac{0±\sqrt{\frac{598}{15}}}{2}
Multiply -4 times -\frac{299}{30}.
s_{2}=\frac{0±\frac{\sqrt{8970}}{15}}{2}
Take the square root of \frac{598}{15}.
s_{2}=\frac{\sqrt{8970}}{30}
Now solve the equation s_{2}=\frac{0±\frac{\sqrt{8970}}{15}}{2} when ± is plus.
s_{2}=-\frac{\sqrt{8970}}{30}
Now solve the equation s_{2}=\frac{0±\frac{\sqrt{8970}}{15}}{2} when ± is minus.
s_{2}=\frac{\sqrt{8970}}{30} s_{2}=-\frac{\sqrt{8970}}{30}
The equation is now solved.