Solve for z, w
z=-1
w=3
Share
Copied to clipboard
w=\frac{12}{4}
Consider the second equation. Divide both sides by 4.
w=3
Divide 12 by 4 to get 3.
-4z-4\times 3=-8
Consider the first equation. Insert the known values of variables into the equation.
-4z-12=-8
Multiply -4 and 3 to get -12.
-4z=-8+12
Add 12 to both sides.
-4z=4
Add -8 and 12 to get 4.
z=\frac{4}{-4}
Divide both sides by -4.
z=-1
Divide 4 by -4 to get -1.
z=-1 w=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}