Solve for x_1, x_2, x_3
x_{1}=-6
x_{2}=-13
x_{3}=-28
Share
Copied to clipboard
x_{3}=-2x_{1}+3x_{2}-1
Solve -2x_{1}+3x_{2}-x_{3}=1 for x_{3}.
x_{1}+2x_{2}-\left(-2x_{1}+3x_{2}-1\right)=-4 -2x_{1}-x_{2}-2x_{1}+3x_{2}-1=-3
Substitute -2x_{1}+3x_{2}-1 for x_{3} in the second and third equation.
x_{2}=3x_{1}+5 x_{1}=\frac{1}{2}+\frac{1}{2}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=\frac{1}{2}+\frac{1}{2}\left(3x_{1}+5\right)
Substitute 3x_{1}+5 for x_{2} in the equation x_{1}=\frac{1}{2}+\frac{1}{2}x_{2}.
x_{1}=-6
Solve x_{1}=\frac{1}{2}+\frac{1}{2}\left(3x_{1}+5\right) for x_{1}.
x_{2}=3\left(-6\right)+5
Substitute -6 for x_{1} in the equation x_{2}=3x_{1}+5.
x_{2}=-13
Calculate x_{2} from x_{2}=3\left(-6\right)+5.
x_{3}=-2\left(-6\right)+3\left(-13\right)-1
Substitute -13 for x_{2} and -6 for x_{1} in the equation x_{3}=-2x_{1}+3x_{2}-1.
x_{3}=-28
Calculate x_{3} from x_{3}=-2\left(-6\right)+3\left(-13\right)-1.
x_{1}=-6 x_{2}=-13 x_{3}=-28
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}