Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x-3y=7,-13x+20y=322
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-2x-3y=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-2x=3y+7
Add 3y to both sides of the equation.
x=-\frac{1}{2}\left(3y+7\right)
Divide both sides by -2.
x=-\frac{3}{2}y-\frac{7}{2}
Multiply -\frac{1}{2} times 3y+7.
-13\left(-\frac{3}{2}y-\frac{7}{2}\right)+20y=322
Substitute \frac{-3y-7}{2} for x in the other equation, -13x+20y=322.
\frac{39}{2}y+\frac{91}{2}+20y=322
Multiply -13 times \frac{-3y-7}{2}.
\frac{79}{2}y+\frac{91}{2}=322
Add \frac{39y}{2} to 20y.
\frac{79}{2}y=\frac{553}{2}
Subtract \frac{91}{2} from both sides of the equation.
y=7
Divide both sides of the equation by \frac{79}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times 7-\frac{7}{2}
Substitute 7 for y in x=-\frac{3}{2}y-\frac{7}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-21-7}{2}
Multiply -\frac{3}{2} times 7.
x=-14
Add -\frac{7}{2} to -\frac{21}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-14,y=7
The system is now solved.
-2x-3y=7,-13x+20y=322
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\322\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right))\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right))\left(\begin{matrix}7\\322\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right))\left(\begin{matrix}7\\322\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-13&20\end{matrix}\right))\left(\begin{matrix}7\\322\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{-2\times 20-\left(-3\left(-13\right)\right)}&-\frac{-3}{-2\times 20-\left(-3\left(-13\right)\right)}\\-\frac{-13}{-2\times 20-\left(-3\left(-13\right)\right)}&-\frac{2}{-2\times 20-\left(-3\left(-13\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\322\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{79}&-\frac{3}{79}\\-\frac{13}{79}&\frac{2}{79}\end{matrix}\right)\left(\begin{matrix}7\\322\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{79}\times 7-\frac{3}{79}\times 322\\-\frac{13}{79}\times 7+\frac{2}{79}\times 322\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\7\end{matrix}\right)
Do the arithmetic.
x=-14,y=7
Extract the matrix elements x and y.
-2x-3y=7,-13x+20y=322
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-13\left(-2\right)x-13\left(-3\right)y=-13\times 7,-2\left(-13\right)x-2\times 20y=-2\times 322
To make -2x and -13x equal, multiply all terms on each side of the first equation by -13 and all terms on each side of the second by -2.
26x+39y=-91,26x-40y=-644
Simplify.
26x-26x+39y+40y=-91+644
Subtract 26x-40y=-644 from 26x+39y=-91 by subtracting like terms on each side of the equal sign.
39y+40y=-91+644
Add 26x to -26x. Terms 26x and -26x cancel out, leaving an equation with only one variable that can be solved.
79y=-91+644
Add 39y to 40y.
79y=553
Add -91 to 644.
y=7
Divide both sides by 79.
-13x+20\times 7=322
Substitute 7 for y in -13x+20y=322. Because the resulting equation contains only one variable, you can solve for x directly.
-13x+140=322
Multiply 20 times 7.
-13x=182
Subtract 140 from both sides of the equation.
x=-14
Divide both sides by -13.
x=-14,y=7
The system is now solved.