Solve for a, b, c
a = -\frac{282}{25} = -11\frac{7}{25} = -11.28
b = -\frac{44}{25} = -1\frac{19}{25} = -1.76
c = \frac{238}{25} = 9\frac{13}{25} = 9.52
Share
Copied to clipboard
b=a+c -30+5c+10b=0 74+5a+10b=0
Reorder the equations.
-30+5c+10\left(a+c\right)=0 74+5a+10\left(a+c\right)=0
Substitute a+c for b in the second and third equation.
a=3-\frac{3}{2}c c=-\frac{3}{2}a-\frac{37}{5}
Solve these equations for a and c respectively.
c=-\frac{3}{2}\left(3-\frac{3}{2}c\right)-\frac{37}{5}
Substitute 3-\frac{3}{2}c for a in the equation c=-\frac{3}{2}a-\frac{37}{5}.
c=\frac{238}{25}
Solve c=-\frac{3}{2}\left(3-\frac{3}{2}c\right)-\frac{37}{5} for c.
a=3-\frac{3}{2}\times \frac{238}{25}
Substitute \frac{238}{25} for c in the equation a=3-\frac{3}{2}c.
a=-\frac{282}{25}
Calculate a from a=3-\frac{3}{2}\times \frac{238}{25}.
b=-\frac{282}{25}+\frac{238}{25}
Substitute -\frac{282}{25} for a and \frac{238}{25} for c in the equation b=a+c.
b=-\frac{44}{25}
Calculate b from b=-\frac{282}{25}+\frac{238}{25}.
a=-\frac{282}{25} b=-\frac{44}{25} c=\frac{238}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}