Solve for x_1, x_2, x_3
x_{1}=-1
x_{2}=3
x_{3}=-2
Share
Copied to clipboard
x_{1}=5x_{2}-2x_{3}-20
Solve x_{1}-5x_{2}+2x_{3}=-20 for x_{1}.
-3\left(5x_{2}-2x_{3}-20\right)+x_{2}-x_{3}=8
Substitute 5x_{2}-2x_{3}-20 for x_{1} in the equation -3x_{1}+x_{2}-x_{3}=8.
x_{2}=\frac{5}{14}x_{3}+\frac{26}{7} x_{3}=-\frac{16}{5}+\frac{2}{5}x_{2}
Solve the second equation for x_{2} and the third equation for x_{3}.
x_{3}=-\frac{16}{5}+\frac{2}{5}\left(\frac{5}{14}x_{3}+\frac{26}{7}\right)
Substitute \frac{5}{14}x_{3}+\frac{26}{7} for x_{2} in the equation x_{3}=-\frac{16}{5}+\frac{2}{5}x_{2}.
x_{3}=-2
Solve x_{3}=-\frac{16}{5}+\frac{2}{5}\left(\frac{5}{14}x_{3}+\frac{26}{7}\right) for x_{3}.
x_{2}=\frac{5}{14}\left(-2\right)+\frac{26}{7}
Substitute -2 for x_{3} in the equation x_{2}=\frac{5}{14}x_{3}+\frac{26}{7}.
x_{2}=3
Calculate x_{2} from x_{2}=\frac{5}{14}\left(-2\right)+\frac{26}{7}.
x_{1}=5\times 3-2\left(-2\right)-20
Substitute 3 for x_{2} and -2 for x_{3} in the equation x_{1}=5x_{2}-2x_{3}-20.
x_{1}=-1
Calculate x_{1} from x_{1}=5\times 3-2\left(-2\right)-20.
x_{1}=-1 x_{2}=3 x_{3}=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}