Solve for x, y
x=60
y=80
Graph
Share
Copied to clipboard
x+y=140,\frac{21}{20}x+\frac{9}{10}y=135
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=140
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+140
Subtract y from both sides of the equation.
\frac{21}{20}\left(-y+140\right)+\frac{9}{10}y=135
Substitute -y+140 for x in the other equation, \frac{21}{20}x+\frac{9}{10}y=135.
-\frac{21}{20}y+147+\frac{9}{10}y=135
Multiply \frac{21}{20} times -y+140.
-\frac{3}{20}y+147=135
Add -\frac{21y}{20} to \frac{9y}{10}.
-\frac{3}{20}y=-12
Subtract 147 from both sides of the equation.
y=80
Divide both sides of the equation by -\frac{3}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-80+140
Substitute 80 for y in x=-y+140. Because the resulting equation contains only one variable, you can solve for x directly.
x=60
Add 140 to -80.
x=60,y=80
The system is now solved.
x+y=140,\frac{21}{20}x+\frac{9}{10}y=135
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}140\\135\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right))\left(\begin{matrix}140\\135\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right))\left(\begin{matrix}140\\135\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{21}{20}&\frac{9}{10}\end{matrix}\right))\left(\begin{matrix}140\\135\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{9}{10}}{\frac{9}{10}-\frac{21}{20}}&-\frac{1}{\frac{9}{10}-\frac{21}{20}}\\-\frac{\frac{21}{20}}{\frac{9}{10}-\frac{21}{20}}&\frac{1}{\frac{9}{10}-\frac{21}{20}}\end{matrix}\right)\left(\begin{matrix}140\\135\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6&\frac{20}{3}\\7&-\frac{20}{3}\end{matrix}\right)\left(\begin{matrix}140\\135\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\times 140+\frac{20}{3}\times 135\\7\times 140-\frac{20}{3}\times 135\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\80\end{matrix}\right)
Do the arithmetic.
x=60,y=80
Extract the matrix elements x and y.
x+y=140,\frac{21}{20}x+\frac{9}{10}y=135
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{21}{20}x+\frac{21}{20}y=\frac{21}{20}\times 140,\frac{21}{20}x+\frac{9}{10}y=135
To make x and \frac{21x}{20} equal, multiply all terms on each side of the first equation by \frac{21}{20} and all terms on each side of the second by 1.
\frac{21}{20}x+\frac{21}{20}y=147,\frac{21}{20}x+\frac{9}{10}y=135
Simplify.
\frac{21}{20}x-\frac{21}{20}x+\frac{21}{20}y-\frac{9}{10}y=147-135
Subtract \frac{21}{20}x+\frac{9}{10}y=135 from \frac{21}{20}x+\frac{21}{20}y=147 by subtracting like terms on each side of the equal sign.
\frac{21}{20}y-\frac{9}{10}y=147-135
Add \frac{21x}{20} to -\frac{21x}{20}. Terms \frac{21x}{20} and -\frac{21x}{20} cancel out, leaving an equation with only one variable that can be solved.
\frac{3}{20}y=147-135
Add \frac{21y}{20} to -\frac{9y}{10}.
\frac{3}{20}y=12
Add 147 to -135.
y=80
Divide both sides of the equation by \frac{3}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{21}{20}x+\frac{9}{10}\times 80=135
Substitute 80 for y in \frac{21}{20}x+\frac{9}{10}y=135. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{21}{20}x+72=135
Multiply \frac{9}{10} times 80.
\frac{21}{20}x=63
Subtract 72 from both sides of the equation.
x=60
Divide both sides of the equation by \frac{21}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=60,y=80
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}