Solve for x, y, z
x = \frac{142}{41} = 3\frac{19}{41} \approx 3.463414634
y = \frac{4544}{41} = 110\frac{34}{41} \approx 110.829268293
z = \frac{1136}{41} = 27\frac{29}{41} \approx 27.707317073
Share
Copied to clipboard
y=4z x+y+z=142 z=8x
Reorder the equations.
x+4z+z=142
Substitute 4z for y in the equation x+y+z=142.
x=-5z+142
Solve x+4z+z=142 for x.
z=8\left(-5z+142\right)
Substitute -5z+142 for x in the equation z=8x.
z=\frac{1136}{41}
Solve z=8\left(-5z+142\right) for z.
x=-5\times \frac{1136}{41}+142
Substitute \frac{1136}{41} for z in the equation x=-5z+142.
x=\frac{142}{41}
Calculate x from x=-5\times \frac{1136}{41}+142.
y=4\times \frac{1136}{41}
Substitute \frac{1136}{41} for z in the equation y=4z.
y=\frac{4544}{41}
Calculate y from y=4\times \frac{1136}{41}.
x=\frac{142}{41} y=\frac{4544}{41} z=\frac{1136}{41}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}