Solve for m, s
s=40
m=65
Share
Copied to clipboard
m+s=105,4m+s=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
m+s=105
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
m=-s+105
Subtract s from both sides of the equation.
4\left(-s+105\right)+s=300
Substitute -s+105 for m in the other equation, 4m+s=300.
-4s+420+s=300
Multiply 4 times -s+105.
-3s+420=300
Add -4s to s.
-3s=-120
Subtract 420 from both sides of the equation.
s=40
Divide both sides by -3.
m=-40+105
Substitute 40 for s in m=-s+105. Because the resulting equation contains only one variable, you can solve for m directly.
m=65
Add 105 to -40.
m=65,s=40
The system is now solved.
m+s=105,4m+s=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&1\end{matrix}\right)\left(\begin{matrix}m\\s\end{matrix}\right)=\left(\begin{matrix}105\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&1\end{matrix}\right))\left(\begin{matrix}1&1\\4&1\end{matrix}\right)\left(\begin{matrix}m\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&1\end{matrix}\right))\left(\begin{matrix}105\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&1\end{matrix}\right))\left(\begin{matrix}105\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&1\end{matrix}\right))\left(\begin{matrix}105\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\s\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4}&-\frac{1}{1-4}\\-\frac{4}{1-4}&\frac{1}{1-4}\end{matrix}\right)\left(\begin{matrix}105\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\s\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}105\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\s\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 105+\frac{1}{3}\times 300\\\frac{4}{3}\times 105-\frac{1}{3}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\s\end{matrix}\right)=\left(\begin{matrix}65\\40\end{matrix}\right)
Do the arithmetic.
m=65,s=40
Extract the matrix elements m and s.
m+s=105,4m+s=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
m-4m+s-s=105-300
Subtract 4m+s=300 from m+s=105 by subtracting like terms on each side of the equal sign.
m-4m=105-300
Add s to -s. Terms s and -s cancel out, leaving an equation with only one variable that can be solved.
-3m=105-300
Add m to -4m.
-3m=-195
Add 105 to -300.
m=65
Divide both sides by -3.
4\times 65+s=300
Substitute 65 for m in 4m+s=300. Because the resulting equation contains only one variable, you can solve for s directly.
260+s=300
Multiply 4 times 65.
s=40
Subtract 260 from both sides of the equation.
m=65,s=40
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}