Solve for A, B, C
A=-\frac{12}{67}\approx -0.179104478
B = \frac{118}{67} = 1\frac{51}{67} \approx 1.76119403
C=\frac{52}{67}\approx 0.776119403
Share
Copied to clipboard
A=-3B+4C+2
Solve A+3B-4C=2 for A.
-\left(-3B+4C+2\right)+4B+C=8 6\left(-3B+4C+2\right)+2B+2C=4
Substitute -3B+4C+2 for A in the second and third equation.
B=\frac{3}{7}C+\frac{10}{7} C=-\frac{4}{13}+\frac{8}{13}B
Solve these equations for B and C respectively.
C=-\frac{4}{13}+\frac{8}{13}\left(\frac{3}{7}C+\frac{10}{7}\right)
Substitute \frac{3}{7}C+\frac{10}{7} for B in the equation C=-\frac{4}{13}+\frac{8}{13}B.
C=\frac{52}{67}
Solve C=-\frac{4}{13}+\frac{8}{13}\left(\frac{3}{7}C+\frac{10}{7}\right) for C.
B=\frac{3}{7}\times \frac{52}{67}+\frac{10}{7}
Substitute \frac{52}{67} for C in the equation B=\frac{3}{7}C+\frac{10}{7}.
B=\frac{118}{67}
Calculate B from B=\frac{3}{7}\times \frac{52}{67}+\frac{10}{7}.
A=-3\times \frac{118}{67}+4\times \frac{52}{67}+2
Substitute \frac{118}{67} for B and \frac{52}{67} for C in the equation A=-3B+4C+2.
A=-\frac{12}{67}
Calculate A from A=-3\times \frac{118}{67}+4\times \frac{52}{67}+2.
A=-\frac{12}{67} B=\frac{118}{67} C=\frac{52}{67}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}