Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+y=21,24x-5y=23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+y=21
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-y+21
Subtract y from both sides of the equation.
x=\frac{1}{8}\left(-y+21\right)
Divide both sides by 8.
x=-\frac{1}{8}y+\frac{21}{8}
Multiply \frac{1}{8} times -y+21.
24\left(-\frac{1}{8}y+\frac{21}{8}\right)-5y=23
Substitute \frac{-y+21}{8} for x in the other equation, 24x-5y=23.
-3y+63-5y=23
Multiply 24 times \frac{-y+21}{8}.
-8y+63=23
Add -3y to -5y.
-8y=-40
Subtract 63 from both sides of the equation.
y=5
Divide both sides by -8.
x=-\frac{1}{8}\times 5+\frac{21}{8}
Substitute 5 for y in x=-\frac{1}{8}y+\frac{21}{8}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-5+21}{8}
Multiply -\frac{1}{8} times 5.
x=2
Add \frac{21}{8} to -\frac{5}{8} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2,y=5
The system is now solved.
8x+y=21,24x-5y=23
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&1\\24&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-24}&-\frac{1}{8\left(-5\right)-24}\\-\frac{24}{8\left(-5\right)-24}&\frac{8}{8\left(-5\right)-24}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}&\frac{1}{64}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}\times 21+\frac{1}{64}\times 23\\\frac{3}{8}\times 21-\frac{1}{8}\times 23\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Do the arithmetic.
x=2,y=5
Extract the matrix elements x and y.
8x+y=21,24x-5y=23
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
24\times 8x+24y=24\times 21,8\times 24x+8\left(-5\right)y=8\times 23
To make 8x and 24x equal, multiply all terms on each side of the first equation by 24 and all terms on each side of the second by 8.
192x+24y=504,192x-40y=184
Simplify.
192x-192x+24y+40y=504-184
Subtract 192x-40y=184 from 192x+24y=504 by subtracting like terms on each side of the equal sign.
24y+40y=504-184
Add 192x to -192x. Terms 192x and -192x cancel out, leaving an equation with only one variable that can be solved.
64y=504-184
Add 24y to 40y.
64y=320
Add 504 to -184.
y=5
Divide both sides by 64.
24x-5\times 5=23
Substitute 5 for y in 24x-5y=23. Because the resulting equation contains only one variable, you can solve for x directly.
24x-25=23
Multiply -5 times 5.
24x=48
Add 25 to both sides of the equation.
x=2
Divide both sides by 24.
x=2,y=5
The system is now solved.