Solve for x, y
x = \frac{21}{4} = 5\frac{1}{4} = 5.25
y = \frac{123}{32} = 3\frac{27}{32} = 3.84375
Graph
Share
Copied to clipboard
4x=-3+24
Consider the second equation. Add 24 to both sides.
4x=21
Add -3 and 24 to get 21.
x=\frac{21}{4}
Divide both sides by 4.
7\times \frac{21}{4}-8y=6
Consider the first equation. Insert the known values of variables into the equation.
\frac{147}{4}-8y=6
Multiply 7 and \frac{21}{4} to get \frac{147}{4}.
-8y=6-\frac{147}{4}
Subtract \frac{147}{4} from both sides.
-8y=-\frac{123}{4}
Subtract \frac{147}{4} from 6 to get -\frac{123}{4}.
y=\frac{-\frac{123}{4}}{-8}
Divide both sides by -8.
y=\frac{-123}{4\left(-8\right)}
Express \frac{-\frac{123}{4}}{-8} as a single fraction.
y=\frac{-123}{-32}
Multiply 4 and -8 to get -32.
y=\frac{123}{32}
Fraction \frac{-123}{-32} can be simplified to \frac{123}{32} by removing the negative sign from both the numerator and the denominator.
x=\frac{21}{4} y=\frac{123}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}