Solve for x, y
x=5
y=-3
Graph
Share
Copied to clipboard
5\left(x+5\right)-2\left(y-3\right)=62,4\left(x-7\right)-\left(y+4\right)=-9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5\left(x+5\right)-2\left(y-3\right)=62
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x+25-2\left(y-3\right)=62
Multiply 5 times x+5.
5x+25-2y+6=62
Multiply -2 times y-3.
5x-2y+31=62
Add 25 to 6.
5x-2y=31
Subtract 31 from both sides of the equation.
5x=2y+31
Add 2y to both sides of the equation.
x=\frac{1}{5}\left(2y+31\right)
Divide both sides by 5.
x=\frac{2}{5}y+\frac{31}{5}
Multiply \frac{1}{5} times 2y+31.
4\left(\frac{2}{5}y+\frac{31}{5}-7\right)-\left(y+4\right)=-9
Substitute \frac{2y+31}{5} for x in the other equation, 4\left(x-7\right)-\left(y+4\right)=-9.
4\left(\frac{2}{5}y-\frac{4}{5}\right)-\left(y+4\right)=-9
Add \frac{31}{5} to -7.
\frac{8}{5}y-\frac{16}{5}-\left(y+4\right)=-9
Multiply 4 times \frac{-4+2y}{5}.
\frac{8}{5}y-\frac{16}{5}-y-4=-9
Multiply -1 times y+4.
\frac{3}{5}y-\frac{16}{5}-4=-9
Add \frac{8y}{5} to -y.
\frac{3}{5}y-\frac{36}{5}=-9
Add -\frac{16}{5} to -4.
\frac{3}{5}y=-\frac{9}{5}
Add \frac{36}{5} to both sides of the equation.
y=-3
Divide both sides of the equation by \frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2}{5}\left(-3\right)+\frac{31}{5}
Substitute -3 for y in x=\frac{2}{5}y+\frac{31}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-6+31}{5}
Multiply \frac{2}{5} times -3.
x=5
Add \frac{31}{5} to -\frac{6}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=-3
The system is now solved.
5\left(x+5\right)-2\left(y-3\right)=62,4\left(x-7\right)-\left(y+4\right)=-9
Put the equations in standard form and then use matrices to solve the system of equations.
5\left(x+5\right)-2\left(y-3\right)=62
Simplify the first equation to put it in standard form.
5x+25-2\left(y-3\right)=62
Multiply 5 times x+5.
5x+25-2y+6=62
Multiply -2 times y-3.
5x-2y+31=62
Add 25 to 6.
5x-2y=31
Subtract 31 from both sides of the equation.
4\left(x-7\right)-\left(y+4\right)=-9
Simplify the second equation to put it in standard form.
4x-28-\left(y+4\right)=-9
Multiply 4 times x-7.
4x-28-y-4=-9
Multiply -1 times y+4.
4x-y-32=-9
Add -28 to -4.
4x-y=23
Add 32 to both sides of the equation.
\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}31\\23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right))\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right))\left(\begin{matrix}31\\23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-2\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right))\left(\begin{matrix}31\\23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\4&-1\end{matrix}\right))\left(\begin{matrix}31\\23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\times 4\right)}&-\frac{-2}{5\left(-1\right)-\left(-2\times 4\right)}\\-\frac{4}{5\left(-1\right)-\left(-2\times 4\right)}&\frac{5}{5\left(-1\right)-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}31\\23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{4}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}31\\23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 31+\frac{2}{3}\times 23\\-\frac{4}{3}\times 31+\frac{5}{3}\times 23\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Do the arithmetic.
x=5,y=-3
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}