Solve for x, y
x=32
y=120
Graph
Share
Copied to clipboard
5x=4\times 40
Consider the first equation. Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x, the least common multiple of 4,x.
5x=160
Multiply 4 and 40 to get 160.
x=\frac{160}{5}
Divide both sides by 5.
x=32
Divide 160 by 5 to get 32.
40+32=0.6y
Consider the second equation. Insert the known values of variables into the equation.
72=0.6y
Add 40 and 32 to get 72.
0.6y=72
Swap sides so that all variable terms are on the left hand side.
y=\frac{72}{0.6}
Divide both sides by 0.6.
y=\frac{720}{6}
Expand \frac{72}{0.6} by multiplying both numerator and the denominator by 10.
y=120
Divide 720 by 6 to get 120.
x=32 y=120
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}