Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\left(652x-x^{2}\right)
Factor out 7.
x\left(652-x\right)
Consider 652x-x^{2}. Factor out x.
7x\left(-x+652\right)
Rewrite the complete factored expression.
-7x^{2}+4564x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4564±\sqrt{4564^{2}}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4564±4564}{2\left(-7\right)}
Take the square root of 4564^{2}.
x=\frac{-4564±4564}{-14}
Multiply 2 times -7.
x=\frac{0}{-14}
Now solve the equation x=\frac{-4564±4564}{-14} when ± is plus. Add -4564 to 4564.
x=0
Divide 0 by -14.
x=-\frac{9128}{-14}
Now solve the equation x=\frac{-4564±4564}{-14} when ± is minus. Subtract 4564 from -4564.
x=652
Divide -9128 by -14.
-7x^{2}+4564x=-7x\left(x-652\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 652 for x_{2}.