Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-\frac{3}{4}y+\frac{1}{2}z-\frac{11}{4}
Solve 4x+3y-2z=-11 for x.
-3\left(-\frac{3}{4}y+\frac{1}{2}z-\frac{11}{4}\right)-7y+3z=10 -9\left(-\frac{3}{4}y+\frac{1}{2}z-\frac{11}{4}\right)-8y+5z=9
Substitute -\frac{3}{4}y+\frac{1}{2}z-\frac{11}{4} for x in the second and third equation.
y=-\frac{7}{19}+\frac{6}{19}z z=-\frac{63}{2}+\frac{5}{2}y
Solve these equations for y and z respectively.
z=-\frac{63}{2}+\frac{5}{2}\left(-\frac{7}{19}+\frac{6}{19}z\right)
Substitute -\frac{7}{19}+\frac{6}{19}z for y in the equation z=-\frac{63}{2}+\frac{5}{2}y.
z=-154
Solve z=-\frac{63}{2}+\frac{5}{2}\left(-\frac{7}{19}+\frac{6}{19}z\right) for z.
y=-\frac{7}{19}+\frac{6}{19}\left(-154\right)
Substitute -154 for z in the equation y=-\frac{7}{19}+\frac{6}{19}z.
y=-49
Calculate y from y=-\frac{7}{19}+\frac{6}{19}\left(-154\right).
x=-\frac{3}{4}\left(-49\right)+\frac{1}{2}\left(-154\right)-\frac{11}{4}
Substitute -49 for y and -154 for z in the equation x=-\frac{3}{4}y+\frac{1}{2}z-\frac{11}{4}.
x=-43
Calculate x from x=-\frac{3}{4}\left(-49\right)+\frac{1}{2}\left(-154\right)-\frac{11}{4}.
x=-43 y=-49 z=-154
The system is now solved.