Solve for x, y
x=-\frac{32}{39}\approx -0.820512821
y=\frac{32}{39}\approx 0.820512821
Graph
Share
Copied to clipboard
x+2y-y=0
Consider the second equation. Subtract y from both sides.
x+y=0
Combine 2y and -y to get y.
4x+160y=128,x+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+160y=128
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-160y+128
Subtract 160y from both sides of the equation.
x=\frac{1}{4}\left(-160y+128\right)
Divide both sides by 4.
x=-40y+32
Multiply \frac{1}{4} times -160y+128.
-40y+32+y=0
Substitute -40y+32 for x in the other equation, x+y=0.
-39y+32=0
Add -40y to y.
-39y=-32
Subtract 32 from both sides of the equation.
y=\frac{32}{39}
Divide both sides by -39.
x=-40\times \frac{32}{39}+32
Substitute \frac{32}{39} for y in x=-40y+32. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{1280}{39}+32
Multiply -40 times \frac{32}{39}.
x=-\frac{32}{39}
Add 32 to -\frac{1280}{39}.
x=-\frac{32}{39},y=\frac{32}{39}
The system is now solved.
x+2y-y=0
Consider the second equation. Subtract y from both sides.
x+y=0
Combine 2y and -y to get y.
4x+160y=128,x+y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&160\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}128\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&160\\1&1\end{matrix}\right))\left(\begin{matrix}4&160\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&160\\1&1\end{matrix}\right))\left(\begin{matrix}128\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&160\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&160\\1&1\end{matrix}\right))\left(\begin{matrix}128\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&160\\1&1\end{matrix}\right))\left(\begin{matrix}128\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-160}&-\frac{160}{4-160}\\-\frac{1}{4-160}&\frac{4}{4-160}\end{matrix}\right)\left(\begin{matrix}128\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{156}&\frac{40}{39}\\\frac{1}{156}&-\frac{1}{39}\end{matrix}\right)\left(\begin{matrix}128\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{156}\times 128\\\frac{1}{156}\times 128\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{32}{39}\\\frac{32}{39}\end{matrix}\right)
Do the arithmetic.
x=-\frac{32}{39},y=\frac{32}{39}
Extract the matrix elements x and y.
x+2y-y=0
Consider the second equation. Subtract y from both sides.
x+y=0
Combine 2y and -y to get y.
4x+160y=128,x+y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+160y=128,4x+4y=0
To make 4x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 4.
4x-4x+160y-4y=128
Subtract 4x+4y=0 from 4x+160y=128 by subtracting like terms on each side of the equal sign.
160y-4y=128
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
156y=128
Add 160y to -4y.
y=\frac{32}{39}
Divide both sides by 156.
x+\frac{32}{39}=0
Substitute \frac{32}{39} for y in x+y=0. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{32}{39}
Subtract \frac{32}{39} from both sides of the equation.
x=-\frac{32}{39},y=\frac{32}{39}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}