Solve for x, y
x=-\frac{1}{9}\approx -0.111111111
y=0.5
Graph
Share
Copied to clipboard
3x+2\times 0.5=\frac{2}{3}
Consider the first equation. Insert the known values of variables into the equation.
3x+1=\frac{2}{3}
Multiply 2 and 0.5 to get 1.
3x=\frac{2}{3}-1
Subtract 1 from both sides.
3x=-\frac{1}{3}
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
x=\frac{-\frac{1}{3}}{3}
Divide both sides by 3.
x=\frac{-1}{3\times 3}
Express \frac{-\frac{1}{3}}{3} as a single fraction.
x=\frac{-1}{9}
Multiply 3 and 3 to get 9.
x=-\frac{1}{9}
Fraction \frac{-1}{9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
x=-\frac{1}{9} y=0.5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}