Solve for r, p
r=-\frac{5}{24}\approx -0.208333333
p = \frac{483}{32} = 15\frac{3}{32} = 15.09375
Share
Copied to clipboard
-\frac{8}{5}r=\frac{1}{3}
Consider the second equation. Combine -r and -\frac{3}{5}r to get -\frac{8}{5}r.
r=\frac{1}{3}\left(-\frac{5}{8}\right)
Multiply both sides by -\frac{5}{8}, the reciprocal of -\frac{8}{5}.
r=-\frac{5}{24}
Multiply \frac{1}{3} and -\frac{5}{8} to get -\frac{5}{24}.
3\left(-\frac{5}{24}\right)+\frac{4}{7}p=8
Consider the first equation. Insert the known values of variables into the equation.
-\frac{5}{8}+\frac{4}{7}p=8
Multiply 3 and -\frac{5}{24} to get -\frac{5}{8}.
\frac{4}{7}p=8+\frac{5}{8}
Add \frac{5}{8} to both sides.
\frac{4}{7}p=\frac{69}{8}
Add 8 and \frac{5}{8} to get \frac{69}{8}.
p=\frac{69}{8}\times \frac{7}{4}
Multiply both sides by \frac{7}{4}, the reciprocal of \frac{4}{7}.
p=\frac{483}{32}
Multiply \frac{69}{8} and \frac{7}{4} to get \frac{483}{32}.
r=-\frac{5}{24} p=\frac{483}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}