Solve for x, y
x = \frac{240}{11} = 21\frac{9}{11} \approx 21.818181818
y = \frac{1170}{11} = 106\frac{4}{11} \approx 106.363636364
Graph
Share
Copied to clipboard
2x+y=150,-5x+3y=210
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-y+150
Subtract y from both sides of the equation.
x=\frac{1}{2}\left(-y+150\right)
Divide both sides by 2.
x=-\frac{1}{2}y+75
Multiply \frac{1}{2} times -y+150.
-5\left(-\frac{1}{2}y+75\right)+3y=210
Substitute -\frac{y}{2}+75 for x in the other equation, -5x+3y=210.
\frac{5}{2}y-375+3y=210
Multiply -5 times -\frac{y}{2}+75.
\frac{11}{2}y-375=210
Add \frac{5y}{2} to 3y.
\frac{11}{2}y=585
Add 375 to both sides of the equation.
y=\frac{1170}{11}
Divide both sides of the equation by \frac{11}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{2}\times \frac{1170}{11}+75
Substitute \frac{1170}{11} for y in x=-\frac{1}{2}y+75. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{585}{11}+75
Multiply -\frac{1}{2} times \frac{1170}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{240}{11}
Add 75 to -\frac{585}{11}.
x=\frac{240}{11},y=\frac{1170}{11}
The system is now solved.
2x+y=150,-5x+3y=210
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\-5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\210\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\-5&3\end{matrix}\right))\left(\begin{matrix}2&1\\-5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-5&3\end{matrix}\right))\left(\begin{matrix}150\\210\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\-5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-5&3\end{matrix}\right))\left(\begin{matrix}150\\210\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-5&3\end{matrix}\right))\left(\begin{matrix}150\\210\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-5\right)}&-\frac{1}{2\times 3-\left(-5\right)}\\-\frac{-5}{2\times 3-\left(-5\right)}&\frac{2}{2\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}150\\210\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{1}{11}\\\frac{5}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}150\\210\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 150-\frac{1}{11}\times 210\\\frac{5}{11}\times 150+\frac{2}{11}\times 210\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{240}{11}\\\frac{1170}{11}\end{matrix}\right)
Do the arithmetic.
x=\frac{240}{11},y=\frac{1170}{11}
Extract the matrix elements x and y.
2x+y=150,-5x+3y=210
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5\times 2x-5y=-5\times 150,2\left(-5\right)x+2\times 3y=2\times 210
To make 2x and -5x equal, multiply all terms on each side of the first equation by -5 and all terms on each side of the second by 2.
-10x-5y=-750,-10x+6y=420
Simplify.
-10x+10x-5y-6y=-750-420
Subtract -10x+6y=420 from -10x-5y=-750 by subtracting like terms on each side of the equal sign.
-5y-6y=-750-420
Add -10x to 10x. Terms -10x and 10x cancel out, leaving an equation with only one variable that can be solved.
-11y=-750-420
Add -5y to -6y.
-11y=-1170
Add -750 to -420.
y=\frac{1170}{11}
Divide both sides by -11.
-5x+3\times \frac{1170}{11}=210
Substitute \frac{1170}{11} for y in -5x+3y=210. Because the resulting equation contains only one variable, you can solve for x directly.
-5x+\frac{3510}{11}=210
Multiply 3 times \frac{1170}{11}.
-5x=-\frac{1200}{11}
Subtract \frac{3510}{11} from both sides of the equation.
x=\frac{240}{11}
Divide both sides by -5.
x=\frac{240}{11},y=\frac{1170}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}