Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Share
Copied to clipboard
\frac{1}{2}\times \frac{1}{3}\times \frac{1}{3}+2\times \frac{2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Cancel out 2 and 2.
\frac{1\times 1}{2\times 3}\times \frac{1}{3}+2\times \frac{2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}\times \frac{1}{3}+2\times \frac{2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
\frac{1\times 1}{6\times 3}+2\times \frac{2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Multiply \frac{1}{6} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{18}+2\times \frac{2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 1}{6\times 3}.
\frac{1}{18}+\frac{2\times 2}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Express 2\times \frac{2}{3} as a single fraction.
\frac{1}{18}+\frac{4}{3}\times \frac{1}{3}\times \frac{1}{2}\times \frac{1}{2}
Multiply 2 and 2 to get 4.
\frac{1}{18}+\frac{4\times 1}{3\times 3}\times \frac{1}{2}\times \frac{1}{2}
Multiply \frac{4}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{18}+\frac{4}{9}\times \frac{1}{2}\times \frac{1}{2}
Do the multiplications in the fraction \frac{4\times 1}{3\times 3}.
\frac{1}{18}+\frac{4\times 1}{9\times 2}\times \frac{1}{2}
Multiply \frac{4}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{18}+\frac{4}{18}\times \frac{1}{2}
Do the multiplications in the fraction \frac{4\times 1}{9\times 2}.
\frac{1}{18}+\frac{2}{9}\times \frac{1}{2}
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
\frac{1}{18}+\frac{2\times 1}{9\times 2}
Multiply \frac{2}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{18}+\frac{1}{9}
Cancel out 2 in both numerator and denominator.
\frac{1}{18}+\frac{2}{18}
Least common multiple of 18 and 9 is 18. Convert \frac{1}{18} and \frac{1}{9} to fractions with denominator 18.
\frac{1+2}{18}
Since \frac{1}{18} and \frac{2}{18} have the same denominator, add them by adding their numerators.
\frac{3}{18}
Add 1 and 2 to get 3.
\frac{1}{6}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}