Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x-10y+13=-16,12x+y=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-6x-10y+13=-16
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-6x-10y=-29
Subtract 13 from both sides of the equation.
-6x=10y-29
Add 10y to both sides of the equation.
x=-\frac{1}{6}\left(10y-29\right)
Divide both sides by -6.
x=-\frac{5}{3}y+\frac{29}{6}
Multiply -\frac{1}{6} times 10y-29.
12\left(-\frac{5}{3}y+\frac{29}{6}\right)+y=13
Substitute -\frac{5y}{3}+\frac{29}{6} for x in the other equation, 12x+y=13.
-20y+58+y=13
Multiply 12 times -\frac{5y}{3}+\frac{29}{6}.
-19y+58=13
Add -20y to y.
-19y=-45
Subtract 58 from both sides of the equation.
y=\frac{45}{19}
Divide both sides by -19.
x=-\frac{5}{3}\times \frac{45}{19}+\frac{29}{6}
Substitute \frac{45}{19} for y in x=-\frac{5}{3}y+\frac{29}{6}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{75}{19}+\frac{29}{6}
Multiply -\frac{5}{3} times \frac{45}{19} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{101}{114}
Add \frac{29}{6} to -\frac{75}{19} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{101}{114},y=\frac{45}{19}
The system is now solved.
-6x-10y+13=-16,12x+y=13
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-29\\13\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right))\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right))\left(\begin{matrix}-29\\13\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-6&-10\\12&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right))\left(\begin{matrix}-29\\13\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-10\\12&1\end{matrix}\right))\left(\begin{matrix}-29\\13\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-6-\left(-10\times 12\right)}&-\frac{-10}{-6-\left(-10\times 12\right)}\\-\frac{12}{-6-\left(-10\times 12\right)}&-\frac{6}{-6-\left(-10\times 12\right)}\end{matrix}\right)\left(\begin{matrix}-29\\13\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{114}&\frac{5}{57}\\-\frac{2}{19}&-\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}-29\\13\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{114}\left(-29\right)+\frac{5}{57}\times 13\\-\frac{2}{19}\left(-29\right)-\frac{1}{19}\times 13\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{101}{114}\\\frac{45}{19}\end{matrix}\right)
Do the arithmetic.
x=\frac{101}{114},y=\frac{45}{19}
Extract the matrix elements x and y.
-6x-10y+13=-16,12x+y=13
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12\left(-6\right)x+12\left(-10\right)y+12\times 13=12\left(-16\right),-6\times 12x-6y=-6\times 13
To make -6x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by -6.
-72x-120y+156=-192,-72x-6y=-78
Simplify.
-72x+72x-120y+6y+156=-192+78
Subtract -72x-6y=-78 from -72x-120y+156=-192 by subtracting like terms on each side of the equal sign.
-120y+6y+156=-192+78
Add -72x to 72x. Terms -72x and 72x cancel out, leaving an equation with only one variable that can be solved.
-114y+156=-192+78
Add -120y to 6y.
-114y+156=-114
Add -192 to 78.
-114y=-270
Subtract 156 from both sides of the equation.
y=\frac{45}{19}
Divide both sides by -114.
12x+\frac{45}{19}=13
Substitute \frac{45}{19} for y in 12x+y=13. Because the resulting equation contains only one variable, you can solve for x directly.
12x=\frac{202}{19}
Subtract \frac{45}{19} from both sides of the equation.
x=\frac{101}{114}
Divide both sides by 12.
x=\frac{101}{114},y=\frac{45}{19}
The system is now solved.