Evaluate
\frac{11663}{44}\approx 265.068181818
Factor
\frac{107 \cdot 109}{2 ^ {2} \cdot 11} = 265\frac{3}{44} = 265.0681818181818
Share
Copied to clipboard
\frac{143+4}{11}+\frac{27\times 11+3}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Multiply 13 and 11 to get 143.
\frac{147}{11}+\frac{27\times 11+3}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Add 143 and 4 to get 147.
\frac{147}{11}+\frac{297+3}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Multiply 27 and 11 to get 297.
\frac{147}{11}+\frac{300}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Add 297 and 3 to get 300.
\frac{147+300}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Since \frac{147}{11} and \frac{300}{11} have the same denominator, add them by adding their numerators.
\frac{447}{11}+\frac{82\times 11+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Add 147 and 300 to get 447.
\frac{447}{11}+\frac{902+2}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Multiply 82 and 11 to get 902.
\frac{447}{11}+\frac{904}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Add 902 and 2 to get 904.
\frac{447+904}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Since \frac{447}{11} and \frac{904}{11} have the same denominator, add them by adding their numerators.
\frac{1351}{11}+\frac{95\times 12+9}{12}+\frac{46\times 2+1}{2}
Add 447 and 904 to get 1351.
\frac{1351}{11}+\frac{1140+9}{12}+\frac{46\times 2+1}{2}
Multiply 95 and 12 to get 1140.
\frac{1351}{11}+\frac{1149}{12}+\frac{46\times 2+1}{2}
Add 1140 and 9 to get 1149.
\frac{1351}{11}+\frac{383}{4}+\frac{46\times 2+1}{2}
Reduce the fraction \frac{1149}{12} to lowest terms by extracting and canceling out 3.
\frac{5404}{44}+\frac{4213}{44}+\frac{46\times 2+1}{2}
Least common multiple of 11 and 4 is 44. Convert \frac{1351}{11} and \frac{383}{4} to fractions with denominator 44.
\frac{5404+4213}{44}+\frac{46\times 2+1}{2}
Since \frac{5404}{44} and \frac{4213}{44} have the same denominator, add them by adding their numerators.
\frac{9617}{44}+\frac{46\times 2+1}{2}
Add 5404 and 4213 to get 9617.
\frac{9617}{44}+\frac{92+1}{2}
Multiply 46 and 2 to get 92.
\frac{9617}{44}+\frac{93}{2}
Add 92 and 1 to get 93.
\frac{9617}{44}+\frac{2046}{44}
Least common multiple of 44 and 2 is 44. Convert \frac{9617}{44} and \frac{93}{2} to fractions with denominator 44.
\frac{9617+2046}{44}
Since \frac{9617}{44} and \frac{2046}{44} have the same denominator, add them by adding their numerators.
\frac{11663}{44}
Add 9617 and 2046 to get 11663.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}