Solve for a, b
a=9
b=48
Share
Copied to clipboard
-4a=-36
Consider the second equation. Subtract 36 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-36}{-4}
Divide both sides by -4.
a=9
Divide -36 by -4 to get 9.
12+4\times 9-b=0
Consider the first equation. Insert the known values of variables into the equation.
12+36-b=0
Multiply 4 and 9 to get 36.
48-b=0
Add 12 and 36 to get 48.
-b=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
b=\frac{-48}{-1}
Divide both sides by -1.
b=48
Fraction \frac{-48}{-1} can be simplified to 48 by removing the negative sign from both the numerator and the denominator.
a=9 b=48
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}