Solve for x, y, z
x = \frac{431}{214} = 2\frac{3}{214} \approx 2.014018692
y = \frac{416}{107} = 3\frac{95}{107} \approx 3.887850467
z = -\frac{897}{428} = -2\frac{41}{428} \approx -2.095794393
Share
Copied to clipboard
x-16y-2z=-56 17x-14y-2z=-16 -9x+4y-6z=10
Reorder the equations.
x=-56+16y+2z
Solve x-16y-2z=-56 for x.
17\left(-56+16y+2z\right)-14y-2z=-16 -9\left(-56+16y+2z\right)+4y-6z=10
Substitute -56+16y+2z for x in the second and third equation.
y=\frac{156}{43}-\frac{16}{129}z z=\frac{247}{12}-\frac{35}{6}y
Solve these equations for y and z respectively.
z=\frac{247}{12}-\frac{35}{6}\left(\frac{156}{43}-\frac{16}{129}z\right)
Substitute \frac{156}{43}-\frac{16}{129}z for y in the equation z=\frac{247}{12}-\frac{35}{6}y.
z=-\frac{897}{428}
Solve z=\frac{247}{12}-\frac{35}{6}\left(\frac{156}{43}-\frac{16}{129}z\right) for z.
y=\frac{156}{43}-\frac{16}{129}\left(-\frac{897}{428}\right)
Substitute -\frac{897}{428} for z in the equation y=\frac{156}{43}-\frac{16}{129}z.
y=\frac{416}{107}
Calculate y from y=\frac{156}{43}-\frac{16}{129}\left(-\frac{897}{428}\right).
x=-56+16\times \frac{416}{107}+2\left(-\frac{897}{428}\right)
Substitute \frac{416}{107} for y and -\frac{897}{428} for z in the equation x=-56+16y+2z.
x=\frac{431}{214}
Calculate x from x=-56+16\times \frac{416}{107}+2\left(-\frac{897}{428}\right).
x=\frac{431}{214} y=\frac{416}{107} z=-\frac{897}{428}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}