Solve for x, y
x=-\frac{1}{18}\approx -0.055555556
y = -\frac{401}{108} = -3\frac{77}{108} \approx -3.712962963
Graph
Share
Copied to clipboard
x-3y-19x=-3y+1
Consider the second equation. Subtract 19x from both sides.
-18x-3y=-3y+1
Combine x and -19x to get -18x.
-18x-3y+3y=1
Add 3y to both sides.
-18x=1
Combine -3y and 3y to get 0.
x=-\frac{1}{18}
Divide both sides by -18.
-5\left(-\frac{1}{18}\right)+6y=-22
Consider the first equation. Insert the known values of variables into the equation.
\frac{5}{18}+6y=-22
Multiply -5 and -\frac{1}{18} to get \frac{5}{18}.
6y=-22-\frac{5}{18}
Subtract \frac{5}{18} from both sides.
6y=-\frac{401}{18}
Subtract \frac{5}{18} from -22 to get -\frac{401}{18}.
y=\frac{-\frac{401}{18}}{6}
Divide both sides by 6.
y=\frac{-401}{18\times 6}
Express \frac{-\frac{401}{18}}{6} as a single fraction.
y=\frac{-401}{108}
Multiply 18 and 6 to get 108.
y=-\frac{401}{108}
Fraction \frac{-401}{108} can be rewritten as -\frac{401}{108} by extracting the negative sign.
x=-\frac{1}{18} y=-\frac{401}{108}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}