Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}-48x+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-4\right)\times 36}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-4\right)\times 36}}{2\left(-4\right)}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304+16\times 36}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-48\right)±\sqrt{2304+576}}{2\left(-4\right)}
Multiply 16 times 36.
x=\frac{-\left(-48\right)±\sqrt{2880}}{2\left(-4\right)}
Add 2304 to 576.
x=\frac{-\left(-48\right)±24\sqrt{5}}{2\left(-4\right)}
Take the square root of 2880.
x=\frac{48±24\sqrt{5}}{2\left(-4\right)}
The opposite of -48 is 48.
x=\frac{48±24\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{24\sqrt{5}+48}{-8}
Now solve the equation x=\frac{48±24\sqrt{5}}{-8} when ± is plus. Add 48 to 24\sqrt{5}.
x=-3\sqrt{5}-6
Divide 48+24\sqrt{5} by -8.
x=\frac{48-24\sqrt{5}}{-8}
Now solve the equation x=\frac{48±24\sqrt{5}}{-8} when ± is minus. Subtract 24\sqrt{5} from 48.
x=3\sqrt{5}-6
Divide 48-24\sqrt{5} by -8.
-4x^{2}-48x+36=-4\left(x-\left(-3\sqrt{5}-6\right)\right)\left(x-\left(3\sqrt{5}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6-3\sqrt{5} for x_{1} and -6+3\sqrt{5} for x_{2}.
x ^ 2 +12x -9 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -12 rs = -9
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -6 - u s = -6 + u
Two numbers r and s sum up to -12 exactly when the average of the two numbers is \frac{1}{2}*-12 = -6. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-6 - u) (-6 + u) = -9
To solve for unknown quantity u, substitute these in the product equation rs = -9
36 - u^2 = -9
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -9-36 = -45
Simplify the expression by subtracting 36 on both sides
u^2 = 45 u = \pm\sqrt{45} = \pm \sqrt{45}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-6 - \sqrt{45} = -12.708 s = -6 + \sqrt{45} = 0.708
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.