Solve for k, r
r = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
k = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
Share
Copied to clipboard
3k+9=-2
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
3k=-2-9
Subtract 9 from both sides.
3k=-11
Subtract 9 from -2 to get -11.
k=-\frac{11}{3}
Divide both sides by 3.
6=-\left(-\frac{11}{3}\right)+r
Consider the second equation. Insert the known values of variables into the equation.
6=\frac{11}{3}+r
Multiply -1 and -\frac{11}{3} to get \frac{11}{3}.
\frac{11}{3}+r=6
Swap sides so that all variable terms are on the left hand side.
r=6-\frac{11}{3}
Subtract \frac{11}{3} from both sides.
r=\frac{7}{3}
Subtract \frac{11}{3} from 6 to get \frac{7}{3}.
k=-\frac{11}{3} r=\frac{7}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}