Solve for x_1, x_2, x_3 (complex solution)
\left\{\begin{matrix}x_{1}=0\text{, }x_{2}=0\text{, }x_{3}=0\text{, }&\left(\lambda =0\text{ or }\mu \neq 0\right)\text{ and }\left(\lambda =\frac{1}{\mu }\text{ or }\lambda \neq 1\right)\text{ and }\left(\mu \neq 0\text{ or }\lambda \neq 1\right)\\x_{1}=-\frac{x_{3}\left(\mu -1\right)}{\lambda \mu -1}\text{, }x_{2}=-\frac{x_{3}\left(\lambda -1\right)}{\lambda \mu -1}\text{, }x_{3}\in \mathrm{C}\text{, }&\mu \neq 1\text{ and }\left(\lambda =1\text{ or }\mu =0\right)\\x_{1}=-x_{3}\text{, }x_{2}=0\text{, }x_{3}\in \mathrm{C}\text{, }&\lambda =1\text{ and }\mu =1\end{matrix}\right.
Solve for x_1, x_2, x_3
\left\{\begin{matrix}x_{1}=0\text{, }x_{2}=0\text{, }x_{3}=0\text{, }&\left(\lambda =0\text{ or }\mu \neq 0\right)\text{ and }\left(\lambda =\frac{1}{\mu }\text{ or }\lambda \neq 1\right)\text{ and }\left(\mu \neq 0\text{ or }\lambda \neq 1\right)\\x_{1}=-\frac{x_{3}\left(\mu -1\right)}{\lambda \mu -1}\text{, }x_{2}=-\frac{x_{3}\left(\lambda -1\right)}{\lambda \mu -1}\text{, }x_{3}\in \mathrm{R}\text{, }&\mu \neq 1\text{ and }\left(\lambda =1\text{ or }\mu =0\right)\\x_{1}=-x_{3}\text{, }x_{2}=0\text{, }x_{3}\in \mathrm{R}\text{, }&\lambda =1\text{ and }\mu =1\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}