Solve for y, x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y=\frac{7}{12}\approx 0.583333333
Graph
Share
Copied to clipboard
1+4y=\frac{10}{3}
Consider the first equation. Divide 3 by 3 to get 1.
4y=\frac{10}{3}-1
Subtract 1 from both sides.
4y=\frac{7}{3}
Subtract 1 from \frac{10}{3} to get \frac{7}{3}.
y=\frac{\frac{7}{3}}{4}
Divide both sides by 4.
y=\frac{7}{3\times 4}
Express \frac{\frac{7}{3}}{4} as a single fraction.
y=\frac{7}{12}
Multiply 3 and 4 to get 12.
\frac{2\left(-2\times \frac{7}{12}+x\right)}{3}-\frac{3x}{2}=-\frac{13}{6}
Consider the second equation. Insert the known values of variables into the equation.
2\times 2\left(-2\times \frac{7}{12}+x\right)-3\times 3x=-13
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
4\left(-2\times \frac{7}{12}+x\right)-3\times 3x=-13
Multiply 2 and 2 to get 4.
4\left(-\frac{7}{6}+x\right)-3\times 3x=-13
Multiply -2 and \frac{7}{12} to get -\frac{7}{6}.
-\frac{14}{3}+4x-3\times 3x=-13
Use the distributive property to multiply 4 by -\frac{7}{6}+x.
-\frac{14}{3}+4x-9x=-13
Multiply -3 and 3 to get -9.
-\frac{14}{3}-5x=-13
Combine 4x and -9x to get -5x.
-5x=-13+\frac{14}{3}
Add \frac{14}{3} to both sides.
-5x=-\frac{25}{3}
Add -13 and \frac{14}{3} to get -\frac{25}{3}.
x=\frac{-\frac{25}{3}}{-5}
Divide both sides by -5.
x=\frac{-25}{3\left(-5\right)}
Express \frac{-\frac{25}{3}}{-5} as a single fraction.
x=\frac{-25}{-15}
Multiply 3 and -5 to get -15.
x=\frac{5}{3}
Reduce the fraction \frac{-25}{-15} to lowest terms by extracting and canceling out -5.
y=\frac{7}{12} x=\frac{5}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}