Solve for x
x=-\frac{ayz}{ay-yz+az}
z\neq 0\text{ and }y\neq 0\text{ and }a\neq 0\text{ and }\left(y\neq -\frac{az}{a-z}\text{ or }z=a\right)
Share
Copied to clipboard
ayz+axz+axy=xyz
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by axyz, the least common multiple of x,y,z,a.
ayz+axz+axy-xyz=0
Subtract xyz from both sides.
axz+axy-xyz=-ayz
Subtract ayz from both sides. Anything subtracted from zero gives its negation.
\left(az+ay-yz\right)x=-ayz
Combine all terms containing x.
\left(ay-yz+az\right)x=-ayz
The equation is in standard form.
\frac{\left(ay-yz+az\right)x}{ay-yz+az}=-\frac{ayz}{ay-yz+az}
Divide both sides by az+ya-yz.
x=-\frac{ayz}{ay-yz+az}
Dividing by az+ya-yz undoes the multiplication by az+ya-yz.
x=-\frac{ayz}{ay-yz+az}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}