Solve for z, k
z=\frac{2}{5}-\frac{11}{5}i=0.4-2.2i
k=\sqrt{5}\approx 2.236067977
Share
Copied to clipboard
z=\frac{3-4i}{2+i}
Consider the first equation. Divide both sides by 2+i.
z=\frac{\left(3-4i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{3-4i}{2+i} by the complex conjugate of the denominator, 2-i.
z=\frac{2-11i}{5}
Do the multiplications in \frac{\left(3-4i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
z=\frac{2}{5}-\frac{11}{5}i
Divide 2-11i by 5 to get \frac{2}{5}-\frac{11}{5}i.
k=|\frac{2}{5}-\frac{11}{5}i|
Consider the second equation. Insert the known values of variables into the equation.
k=\sqrt{5}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{2}{5}-\frac{11}{5}i is \sqrt{5}.
z=\frac{2}{5}-\frac{11}{5}i k=\sqrt{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}