Solve for z, x, y
x=6
y=1
z=71
Share
Copied to clipboard
z=6^{2}-1^{2}+6\times 6
Consider the first equation. Insert the known values of variables into the equation.
z=36-1^{2}+6\times 6
Calculate 6 to the power of 2 and get 36.
z=36-1+6\times 6
Calculate 1 to the power of 2 and get 1.
z=35+6\times 6
Subtract 1 from 36 to get 35.
z=35+36
Multiply 6 and 6 to get 36.
z=71
Add 35 and 36 to get 71.
z=71 x=6 y=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}