Skip to main content
Solve for z, b
Tick mark Image

Similar Problems from Web Search

Share

z+b=7,b^{2}+z^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
z+b=7
Solve z+b=7 for z by isolating z on the left hand side of the equal sign.
z=-b+7
Subtract b from both sides of the equation.
b^{2}+\left(-b+7\right)^{2}=25
Substitute -b+7 for z in the other equation, b^{2}+z^{2}=25.
b^{2}+b^{2}-14b+49=25
Square -b+7.
2b^{2}-14b+49=25
Add b^{2} to b^{2}.
2b^{2}-14b+24=0
Subtract 25 from both sides of the equation.
b=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 7\left(-1\right)\times 2 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-14\right)±\sqrt{196-4\times 2\times 24}}{2\times 2}
Square 1\times 7\left(-1\right)\times 2.
b=\frac{-\left(-14\right)±\sqrt{196-8\times 24}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
b=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 2}
Multiply -8 times 24.
b=\frac{-\left(-14\right)±\sqrt{4}}{2\times 2}
Add 196 to -192.
b=\frac{-\left(-14\right)±2}{2\times 2}
Take the square root of 4.
b=\frac{14±2}{2\times 2}
The opposite of 1\times 7\left(-1\right)\times 2 is 14.
b=\frac{14±2}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{16}{4}
Now solve the equation b=\frac{14±2}{4} when ± is plus. Add 14 to 2.
b=4
Divide 16 by 4.
b=\frac{12}{4}
Now solve the equation b=\frac{14±2}{4} when ± is minus. Subtract 2 from 14.
b=3
Divide 12 by 4.
z=-4+7
There are two solutions for b: 4 and 3. Substitute 4 for b in the equation z=-b+7 to find the corresponding solution for z that satisfies both equations.
z=3
Add -4 to 7.
z=-3+7
Now substitute 3 for b in the equation z=-b+7 and solve to find the corresponding solution for z that satisfies both equations.
z=4
Add -3 to 7.
z=3,b=4\text{ or }z=4,b=3
The system is now solved.