Solve for x
x=-\frac{\sqrt[3]{3}\left(1+\sqrt{3}i\right)\left(\sqrt{3y_{1}^{2}-4}+\sqrt{3}y_{1}\right)^{-\frac{1}{3}}\left(-\left(6^{\frac{2}{3}}i+2^{\frac{2}{3}}\sqrt[6]{3}\right)\left(\sqrt{3y_{1}^{2}-4}+\sqrt{3}y_{1}\right)^{\frac{2}{3}}+4\sqrt[3]{2}\sqrt[6]{3}\right)}{24}
x=\frac{2^{\frac{2}{3}}\left(\frac{\sqrt{3y_{1}^{2}-4}}{3^{\frac{5}{2}}}+\frac{y_{1}}{9}\right)^{-\frac{1}{3}}\left(\left(3\left(\sqrt{3y_{1}^{2}-4}+\sqrt{3}y_{1}\right)\right)^{\frac{2}{3}}+6^{\frac{2}{3}}\right)}{18}
x=-\frac{\sqrt[3]{3}\left(-\sqrt{3}i+1\right)\left(\sqrt{3y_{1}^{2}-4}+\sqrt{3}y_{1}\right)^{-\frac{1}{3}}\left(\left(6^{\frac{2}{3}}i-2^{\frac{2}{3}}\sqrt[6]{3}\right)\left(\sqrt{3y_{1}^{2}-4}+\sqrt{3}y_{1}\right)^{\frac{2}{3}}+4\sqrt[3]{2}\sqrt[6]{3}\right)}{24}\text{, }y_{2}=0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}