Solve for x, y
x=\frac{y_{1}-5}{2}
y=\frac{7-3y_{1}}{2}
Graph
Share
Copied to clipboard
2x+5=y_{1}
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
2x=y_{1}-5
Subtract 5 from both sides.
y+3x=-4
Consider the second equation. Add 3x to both sides.
2x=y_{1}-5,3x+y=-4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x=y_{1}-5
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
x=\frac{y_{1}-5}{2}
Divide both sides by 2.
3\times \frac{y_{1}-5}{2}+y=-4
Substitute \frac{y_{1}-5}{2} for x in the other equation, 3x+y=-4.
\frac{3y_{1}-15}{2}+y=-4
Multiply 3 times \frac{y_{1}-5}{2}.
y=\frac{7-3y_{1}}{2}
Subtract \frac{-15+3y_{1}}{2} from both sides of the equation.
x=\frac{y_{1}-5}{2},y=\frac{7-3y_{1}}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}