Solve for x, y (complex solution)
\left\{\begin{matrix}x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}\text{, }y=\frac{2002-P}{1000}\text{, }&m\neq 0\\x\in \mathrm{C}\text{, }y=\frac{2002-P}{1000}\text{, }&y_{1}=-\frac{P}{1000}+\frac{1001}{500}\text{ and }m=0\end{matrix}\right.
Solve for x, y
\left\{\begin{matrix}x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}\text{, }y=\frac{2002-P}{1000}\text{, }&m\neq 0\\x\in \mathrm{R}\text{, }y=\frac{2002-P}{1000}\text{, }&y_{1}=-\frac{P}{1000}+\frac{1001}{500}\text{ and }m=0\end{matrix}\right.
Graph
Share
Copied to clipboard
P-2=-1000y+2000
Consider the second equation. To find the opposite of 1000y-2000, find the opposite of each term.
-1000y+2000=P-2
Swap sides so that all variable terms are on the left hand side.
-1000y=P-2-2000
Subtract 2000 from both sides.
-1000y=P-2002
Subtract 2000 from -2 to get -2002.
y-y_{1}=mx-mx_{1}
Consider the first equation. Use the distributive property to multiply m by x-x_{1}.
y-y_{1}-mx=-mx_{1}
Subtract mx from both sides.
y-mx=-mx_{1}+y_{1}
Add y_{1} to both sides.
-1000y=P-2002,y+\left(-m\right)x=y_{1}-mx_{1}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-1000y=P-2002
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=-\frac{P}{1000}+\frac{1001}{500}
Divide both sides by -1000.
-\frac{P}{1000}+\frac{1001}{500}+\left(-m\right)x=y_{1}-mx_{1}
Substitute -\frac{P}{1000}+\frac{1001}{500} for y in the other equation, y+\left(-m\right)x=y_{1}-mx_{1}.
\left(-m\right)x=-mx_{1}+\frac{P}{1000}+y_{1}-\frac{1001}{500}
Subtract -\frac{P}{1000}+\frac{1001}{500} from both sides of the equation.
x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}
Divide both sides by -m.
y=-\frac{P}{1000}+\frac{1001}{500},x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}
The system is now solved.
P-2=-1000y+2000
Consider the second equation. To find the opposite of 1000y-2000, find the opposite of each term.
-1000y+2000=P-2
Swap sides so that all variable terms are on the left hand side.
-1000y=P-2-2000
Subtract 2000 from both sides.
-1000y=P-2002
Subtract 2000 from -2 to get -2002.
y-y_{1}=mx-mx_{1}
Consider the first equation. Use the distributive property to multiply m by x-x_{1}.
y-y_{1}-mx=-mx_{1}
Subtract mx from both sides.
y-mx=-mx_{1}+y_{1}
Add y_{1} to both sides.
-1000y=P-2002,y+\left(-m\right)x=y_{1}-mx_{1}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-1000y=P-2002
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
y=-\frac{P}{1000}+\frac{1001}{500}
Divide both sides by -1000.
-\frac{P}{1000}+\frac{1001}{500}+\left(-m\right)x=y_{1}-mx_{1}
Substitute -\frac{P}{1000}+\frac{1001}{500} for y in the other equation, y+\left(-m\right)x=y_{1}-mx_{1}.
\left(-m\right)x=-mx_{1}+\frac{P}{1000}+y_{1}-\frac{1001}{500}
Subtract -\frac{P}{1000}+\frac{1001}{500} from both sides of the equation.
x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}
Divide both sides by -m.
y=-\frac{P}{1000}+\frac{1001}{500},x=-\frac{-1000mx_{1}+1000y_{1}+P-2002}{1000m}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}