Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-x=4,-5x^{2}+y^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=4
Solve y-x=4 for y by isolating y on the left hand side of the equal sign.
y=x+4
Subtract -x from both sides of the equation.
-5x^{2}+\left(x+4\right)^{2}=20
Substitute x+4 for y in the other equation, -5x^{2}+y^{2}=20.
-5x^{2}+x^{2}+8x+16=20
Square x+4.
-4x^{2}+8x+16=20
Add -5x^{2} to x^{2}.
-4x^{2}+8x-4=0
Subtract 20 from both sides of the equation.
x=\frac{-8±\sqrt{8^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5+1\times 1^{2} for a, 1\times 4\times 1\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Square 1\times 4\times 1\times 2.
x=\frac{-8±\sqrt{64+16\left(-4\right)}}{2\left(-4\right)}
Multiply -4 times -5+1\times 1^{2}.
x=\frac{-8±\sqrt{64-64}}{2\left(-4\right)}
Multiply 16 times -4.
x=\frac{-8±\sqrt{0}}{2\left(-4\right)}
Add 64 to -64.
x=-\frac{8}{2\left(-4\right)}
Take the square root of 0.
x=-\frac{8}{-8}
Multiply 2 times -5+1\times 1^{2}.
x=1
Divide -8 by -8.
y=1+4
There are two solutions for x: 1 and 1. Substitute 1 for x in the equation y=x+4 to find the corresponding solution for y that satisfies both equations.
y=5
Add 1\times 1 to 4.
y=5,x=1\text{ or }y=5,x=1
The system is now solved.