Solve for y, x
x=1
y=5
Graph
Share
Copied to clipboard
y-x=4,-5x^{2}+y^{2}=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=4
Solve y-x=4 for y by isolating y on the left hand side of the equal sign.
y=x+4
Subtract -x from both sides of the equation.
-5x^{2}+\left(x+4\right)^{2}=20
Substitute x+4 for y in the other equation, -5x^{2}+y^{2}=20.
-5x^{2}+x^{2}+8x+16=20
Square x+4.
-4x^{2}+8x+16=20
Add -5x^{2} to x^{2}.
-4x^{2}+8x-4=0
Subtract 20 from both sides of the equation.
x=\frac{-8±\sqrt{8^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5+1\times 1^{2} for a, 1\times 4\times 1\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Square 1\times 4\times 1\times 2.
x=\frac{-8±\sqrt{64+16\left(-4\right)}}{2\left(-4\right)}
Multiply -4 times -5+1\times 1^{2}.
x=\frac{-8±\sqrt{64-64}}{2\left(-4\right)}
Multiply 16 times -4.
x=\frac{-8±\sqrt{0}}{2\left(-4\right)}
Add 64 to -64.
x=-\frac{8}{2\left(-4\right)}
Take the square root of 0.
x=-\frac{8}{-8}
Multiply 2 times -5+1\times 1^{2}.
x=1
Divide -8 by -8.
y=1+4
There are two solutions for x: 1 and 1. Substitute 1 for x in the equation y=x+4 to find the corresponding solution for y that satisfies both equations.
y=5
Add 1\times 1 to 4.
y=5,x=1\text{ or }y=5,x=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}