Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-4=kx-2k
Consider the first equation. Use the distributive property to multiply k by x-2.
y-4-kx=-2k
Subtract kx from both sides.
y-kx=-2k+4
Add 4 to both sides.
y+\left(-k\right)x=4-2k,x^{2}+y^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y+\left(-k\right)x=4-2k
Solve y+\left(-k\right)x=4-2k for y by isolating y on the left hand side of the equal sign.
y=kx+4-2k
Subtract \left(-k\right)x from both sides of the equation.
x^{2}+\left(kx+4-2k\right)^{2}=4
Substitute kx+4-2k for y in the other equation, x^{2}+y^{2}=4.
x^{2}+k^{2}x^{2}+2k\left(4-2k\right)x+\left(4-2k\right)^{2}=4
Square kx+4-2k.
\left(k^{2}+1\right)x^{2}+2k\left(4-2k\right)x+\left(4-2k\right)^{2}=4
Add x^{2} to k^{2}x^{2}.
\left(k^{2}+1\right)x^{2}+2k\left(4-2k\right)x+\left(4-2k\right)^{2}-4=0
Subtract 4 from both sides of the equation.
x=\frac{-2k\left(4-2k\right)±\sqrt{\left(2k\left(4-2k\right)\right)^{2}-4\left(k^{2}+1\right)\left(4k^{2}-16k+12\right)}}{2\left(k^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1k^{2} for a, 1\times 2k\left(4-2k\right) for b, and 12-16k+4k^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2k\left(4-2k\right)±\sqrt{16k^{2}\left(2-k\right)^{2}-4\left(k^{2}+1\right)\left(4k^{2}-16k+12\right)}}{2\left(k^{2}+1\right)}
Square 1\times 2k\left(4-2k\right).
x=\frac{-2k\left(4-2k\right)±\sqrt{16k^{2}\left(2-k\right)^{2}+\left(-4k^{2}-4\right)\left(4k^{2}-16k+12\right)}}{2\left(k^{2}+1\right)}
Multiply -4 times 1+1k^{2}.
x=\frac{-2k\left(4-2k\right)±\sqrt{16k^{2}\left(2-k\right)^{2}-16\left(1-k\right)\left(3-k\right)\left(k^{2}+1\right)}}{2\left(k^{2}+1\right)}
Multiply -4-4k^{2} times 12-16k+4k^{2}.
x=\frac{-2k\left(4-2k\right)±\sqrt{64k-48}}{2\left(k^{2}+1\right)}
Add 16k^{2}\left(2-k\right)^{2} to -16\left(1+k^{2}\right)\left(3-k\right)\left(1-k\right).
x=\frac{-2k\left(4-2k\right)±4\sqrt{4k-3}}{2\left(k^{2}+1\right)}
Take the square root of -48+64k.
x=\frac{-4k\left(2-k\right)±4\sqrt{4k-3}}{2k^{2}+2}
Multiply 2 times 1+1k^{2}.
x=\frac{4k^{2}-8k+4\sqrt{4k-3}}{2k^{2}+2}
Now solve the equation x=\frac{-4k\left(2-k\right)±4\sqrt{4k-3}}{2k^{2}+2} when ± is plus. Add -4k\left(2-k\right) to 4\sqrt{-3+4k}.
x=\frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}
Divide -8k+4k^{2}+4\sqrt{-3+4k} by 2+2k^{2}.
x=\frac{4k^{2}-8k-4\sqrt{4k-3}}{2k^{2}+2}
Now solve the equation x=\frac{-4k\left(2-k\right)±4\sqrt{4k-3}}{2k^{2}+2} when ± is minus. Subtract 4\sqrt{-3+4k} from -4k\left(2-k\right).
x=\frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}
Divide -8k+4k^{2}-4\sqrt{-3+4k} by 2+2k^{2}.
y=k\times \frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}+4-2k
There are two solutions for x: \frac{2\left(-2k+k^{2}+\sqrt{-3+4k}\right)}{1+k^{2}} and \frac{2\left(-2k+k^{2}-\sqrt{-3+4k}\right)}{1+k^{2}}. Substitute \frac{2\left(-2k+k^{2}+\sqrt{-3+4k}\right)}{1+k^{2}} for x in the equation y=kx+4-2k to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}k+4-2k
Multiply k times \frac{2\left(-2k+k^{2}+\sqrt{-3+4k}\right)}{1+k^{2}}.
y=\frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}k-2k+4
Add k\times \frac{2\left(-2k+k^{2}+\sqrt{-3+4k}\right)}{1+k^{2}} to 4-2k.
y=k\times \frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}+4-2k
Now substitute \frac{2\left(-2k+k^{2}-\sqrt{-3+4k}\right)}{1+k^{2}} for x in the equation y=kx+4-2k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}k+4-2k
Multiply k times \frac{2\left(-2k+k^{2}-\sqrt{-3+4k}\right)}{1+k^{2}}.
y=\frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}k-2k+4
Add k\times \frac{2\left(-2k+k^{2}-\sqrt{-3+4k}\right)}{1+k^{2}} to 4-2k.
y=\frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}k-2k+4,x=\frac{2\left(k^{2}-2k+\sqrt{4k-3}\right)}{k^{2}+1}\text{ or }y=\frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}k-2k+4,x=\frac{2\left(k^{2}-2k-\sqrt{4k-3}\right)}{k^{2}+1}
The system is now solved.