Skip to main content
Solve for y, z
Tick mark Image

Similar Problems from Web Search

Share

6y=-1
Consider the first equation. Subtract 1 from both sides. Anything subtracted from zero gives its negation.
y=-\frac{1}{6}
Divide both sides by 6.
z=\left(-\frac{1}{6}\right)^{4}-6\left(-\frac{1}{6}\right)^{3}+7\left(-\frac{1}{6}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{1}{1296}-6\left(-\frac{1}{6}\right)^{3}+7\left(-\frac{1}{6}\right)^{2}
Calculate -\frac{1}{6} to the power of 4 and get \frac{1}{1296}.
z=\frac{1}{1296}-6\left(-\frac{1}{216}\right)+7\left(-\frac{1}{6}\right)^{2}
Calculate -\frac{1}{6} to the power of 3 and get -\frac{1}{216}.
z=\frac{1}{1296}+\frac{1}{36}+7\left(-\frac{1}{6}\right)^{2}
Multiply -6 and -\frac{1}{216} to get \frac{1}{36}.
z=\frac{37}{1296}+7\left(-\frac{1}{6}\right)^{2}
Add \frac{1}{1296} and \frac{1}{36} to get \frac{37}{1296}.
z=\frac{37}{1296}+7\times \frac{1}{36}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
z=\frac{37}{1296}+\frac{7}{36}
Multiply 7 and \frac{1}{36} to get \frac{7}{36}.
z=\frac{289}{1296}
Add \frac{37}{1296} and \frac{7}{36} to get \frac{289}{1296}.
y=-\frac{1}{6} z=\frac{289}{1296}
The system is now solved.