Solve for y, z
z=\frac{289}{1296}\approx 0.222993827
Share
Copied to clipboard
6y=-1
Consider the first equation. Subtract 1 from both sides. Anything subtracted from zero gives its negation.
y=-\frac{1}{6}
Divide both sides by 6.
z=\left(-\frac{1}{6}\right)^{4}-6\left(-\frac{1}{6}\right)^{3}+7\left(-\frac{1}{6}\right)^{2}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{1}{1296}-6\left(-\frac{1}{6}\right)^{3}+7\left(-\frac{1}{6}\right)^{2}
Calculate -\frac{1}{6} to the power of 4 and get \frac{1}{1296}.
z=\frac{1}{1296}-6\left(-\frac{1}{216}\right)+7\left(-\frac{1}{6}\right)^{2}
Calculate -\frac{1}{6} to the power of 3 and get -\frac{1}{216}.
z=\frac{1}{1296}+\frac{1}{36}+7\left(-\frac{1}{6}\right)^{2}
Multiply -6 and -\frac{1}{216} to get \frac{1}{36}.
z=\frac{37}{1296}+7\left(-\frac{1}{6}\right)^{2}
Add \frac{1}{1296} and \frac{1}{36} to get \frac{37}{1296}.
z=\frac{37}{1296}+7\times \frac{1}{36}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
z=\frac{37}{1296}+\frac{7}{36}
Multiply 7 and \frac{1}{36} to get \frac{7}{36}.
z=\frac{289}{1296}
Add \frac{37}{1296} and \frac{7}{36} to get \frac{289}{1296}.
y=-\frac{1}{6} z=\frac{289}{1296}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}