Solve for y, x
x=\frac{15}{16}=0.9375
y = \frac{5 \sqrt{3}}{4} \approx 2.165063509
Graph
Share
Copied to clipboard
\left(\frac{5}{4}\sqrt{3}\right)^{2}=5x
Consider the first equation. Insert the known values of variables into the equation.
\left(\frac{5}{4}\right)^{2}\left(\sqrt{3}\right)^{2}=5x
Expand \left(\frac{5}{4}\sqrt{3}\right)^{2}.
\frac{25}{16}\left(\sqrt{3}\right)^{2}=5x
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{25}{16}\times 3=5x
The square of \sqrt{3} is 3.
\frac{75}{16}=5x
Multiply \frac{25}{16} and 3 to get \frac{75}{16}.
5x=\frac{75}{16}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{75}{16}}{5}
Divide both sides by 5.
x=\frac{75}{16\times 5}
Express \frac{\frac{75}{16}}{5} as a single fraction.
x=\frac{75}{80}
Multiply 16 and 5 to get 80.
x=\frac{15}{16}
Reduce the fraction \frac{75}{80} to lowest terms by extracting and canceling out 5.
y=\frac{5}{4}\sqrt{3} x=\frac{15}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}